隨著交通卡口的大規模聯網,匯集了海量車輛通行記錄信息,利用人工智能技術,可實時分析城市交通流量,調整紅綠燈間隔,縮短車輛等待時間等舉措,提升城市道路的通行效率。
城市級的人工智能大腦,實時掌握著城市道路上通行車輛的軌跡信息,停車場的車輛信息以及小區的停車信息,能提前半個小時預測交通流量變化和停車位數量變化,合理調配資源、疏導交通,實現機場、火車站、汽車站、商圈的大規模交通聯動調度,提升整個城市的運行效率,為居民的出行暢通提供保障。
車牌識別是人工智能應用最理想的領域
目前在智能交通領域,人工智能分析及深度學習比較成熟的應用技術以車牌識別算法最為理想,雖然目前很多廠商都宣稱自己的車牌識別率已經達到了99%,但這也只是在標準卡口的視頻條件下再加上一些預設條件來達到的。在針對很多簡易卡口和卡口圖片進行車牌定位識別時,較好的車牌識別也很難達到90%。不過隨著采用人工智能、深度學習的應用,這一情況將會得到很大的改善。
在傳統的圖像處理和機器學習算法研發中,很多特征都是人為制定的,比如hog、sift特征,在目標檢測和特征匹配中占有重要的地位,安防領域中的很多具體算法所使用的特征大多是這兩種特征的變種。人為設計特征和機器學習算法,從以往的經驗來看,由于理論分析的難度大,訓練方法又需要很多經驗和技巧,一般需要5到10年的時間才會有一次突破性的發展,而且對算法工程師的知識要求也一直在提高。深度學習則不然,在進行圖像檢測和識別時,無需人為設定具體的特征,只需要準備好足夠多的圖進行訓練即可,通過逐層的迭代就可以獲得較好的結果。從目前的應用情況來看,只要加入新數據,并且有充足的時間和計算資源,隨著深度學習網絡層次的增加,識別率就會相應提升,比傳統方法表現更好。
另外在車輛顏色、車輛廠商標志識別、無牌車檢測、非機動車檢測與分類、車頭車尾判斷、車輛檢索、人臉識別等相關的技術方面也比較成熟。
車牌顏色識別
在車輛顏色識別方面,基本上克服了由于光照條件變化、相機硬件誤差所帶來的顏色不穩定、過曝光等一系列問題,因此解決了圖像顏色變化導致的識別錯誤問題,卡口車輛顏色識別率從80%提升到85%,電警車輛主顏色識別率到從75%提升到80%以上。
車輛廠商標志識別
在車輛廠商標志識別方面,使用傳統的HOG、LBP、SIFT、SURF等特征,采用SVM機器學習技術訓練一個多級聯的分類器來識別廠商標志很容易出現誤判,采用大數據加深度學習技術后,車輛車標的過曝光或者車標被人為去掉等引起的局部特征會隨之消失,其識別率可以從89%提升到93%以上。
車輛檢索
在車輛檢索方面,車輛的圖片在不同場景下會出現曝光過度或者曝光不足,或者車輛的尺度發生很大變化,導致傳統方法提取的特征會發生變化,因此檢索率很不穩定。深度學習能夠很好地獲取較為較穩定的特征,搜索的相似目標更精確,Top5的搜索率在95%以上。在人臉識別項目中,由于光線、姿態和表情等因素引起人臉變化,目前很多應用都是固定場景、固定姿態,采用深度學習算法后,不僅固定場景的人臉識別率從89%提升到99%,而且對姿態和光線也有了一定的放松。
交通信號系統
傳統的交通燈使用默認時間轉換燈色,雖然轉換燈色的時間會根據數據每幾年更新一次,但是隨著交通模式發展,傳統系統很快就會過時。而人工智能驅動的智能交通信號系統則以雷達傳感器和攝像頭監控交通狀況,然后利用先進的人工智能算法決定燈色轉換時間,通過人工智能和交通控制理論融合應用,優化了城市道路網絡中的交通流量。
警用機器人
人工智能的警用機器人將取代交通警察,實現公路交通安全的全方位監控、全天候巡邏、立體化監管。
大數據分析
人工智能算法可以根據城市民眾的出行偏好、生活、消費習慣等方式,分析出城市人流、車流的遷移與城市建設及公眾資源的數據。基于這些大數據的分析結果,為政府決策部門進行城市規劃,特別是為公共交通設施的基礎建設提供指導和借鑒。
無人駕駛和汽車輔助駕駛
非常重要的一個技術點就是圖象識別,通過圖像識別前方車輛、行人、障礙物、道路以及交通信號燈和交通標識,這項技術的落地應用將給人類帶來前所未有的出行體驗,重塑交通體系,并構建真正的智能交通時代。
公路交通安全防控體系涉及的核心技術是交通行為監測、交通安全研判、交通風險預警、交通違法執法,而這些技術現已與人工智能融為一體。實現公路交通運行狀態“看得見”、車輛通行軌跡“摸得透”、重點違法行為“抓得住”、安全隱患事件“消得了”、路面協作聯動“響應快”、交通信息應用“服務優”等目標,都離不開人工智能技術。